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Abstract
1.	 Predicting	 the	 structure	 and	 dynamics	 of	 communities	 is	 difficult.	 Approaches	

linking functional traits to niche boundaries, species co-occurrence and demogra-
phy are promising, but have so far had limited success.

2.	 We	hypothesized	that	predictability	 in	community	ecology	could	be	 improved	by	
incorporating more accurate measures of fine-scale environmental heterogeneity 
and the context-dependent function of traits. We tested these hypotheses using 
long term whole-community demography data from an alpine plant community in 
Colorado.

3. Species distributions along microenvironmental gradients covaried with traits im-
portant for below-ground processes. Positive associations between species distri-
butions across life stages could not be explained by abiotic microenvironment 
alone, consistent with facilitative processes. Rates of growth, survival, fecundity 
and recruitment were predicted by the direct and interactive effects of trait, mi-
croenvironment, macroenvironment and neighbourhood axes.

4. Synthesis. Context-dependent interactions between multiple traits and microenvi-
ronmental axes are needed to predict fine-scale community structure and 
dynamics.

K E Y W O R D S

Below-ground processes, biotic interactions, demography, environmental filtering, facilitation, 
functional trait, interaction network, microclimate

1  | INTRODUC TION

A	long-	standing	challenge	for	ecological	theory	has	been	to	predict	
the structure and dynamics of plant communities from basic prin-
ciples	 (Keddy,	 1992;	 Weiher	 et	al.,	 2011).	 At	 large	 spatial	 scales,	
species assemblages can be predicted by relatively simple models 

of species sorting and niches (von Humboldt & Bonpland, 1807 
(tr. 2009); Whittaker, 1967), but this becomes challenging at finer 
scales. Biotic interactions or neutral processes may play increasingly 
important roles (McGill, 2010), leading to the apparently stochastic 
loss and gain of species, and thus reduced predictability of commu-
nity structure (Vellend, 2010). Consequently, community ecology 
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is often perceived as a “mess” (Lawton, 1999), with many research-
ers abandoning fine- scale prediction. However, delineating when 
prediction is possible is a necessary prerequisite for determining 
if investing in collecting sufficient data for predictive modelling is 
worthwhile, e.g. for climate change, invasion and land management 
applications (Blonder et al., 2017).

Here,	 we	 hypothesize	 that	 much	 of	 the	 apparent	 stochastic-
ity in community structure and dynamics is due to deterministic 
environmental heterogeneity at fine spatial scales (Butterfield, 
2009; Ellsworth & Reich, 1992; Stark, Lehman, Crawford, Enquist, 
& Blonder, 2017). Many studies have identified edaphic and mi-
croclimatic	 variables	 driving	 species	 distributions	 (Asner,	 Knapp,	
Anderson,	 Martin,	 &	 Vaughn,	 2016;	 Kobe,	 1999;	 Simpson,	
Richardson, & Laughlin, 2016) that often vary more within a few me-
tres at a single site than the mean values across sites separated by 
kilometers	(Opedal,	Armbruster,	&	Graae,	2015;	Scherrer	&	Körner,	
2011; Stark et al., 2017). Thus, microenvironmental heterogeneity 
could impact both current community structure and community dy-
namics over time.

We	also	hypothesize	 that	much	of	 the	variation	 in	 species’	 re-
sponses to microclimatic variation is mediated by the context- 
dependent	 function	of	 traits.	A	 long	 research	program	has	argued	
for environmental sensitivity of functional traits which in turn affect 
performance	 and	ultimately	 fitness	 (Arnold,	 1983).	 These	 linkages	
are often explored in terms of direct effects of each variable, al-
though interactive effects may be more important. Thus, incorporat-
ing interactions between functional traits and the microenvironment 
may improve predictability of communities.

Trait- mediated effects on community dynamics could arise 
in	 several	ways.	 First,	 functional	 traits	may	 influence	 the	 realized	
niche boundaries or physiological tolerances of species (Violle & 
Jiang,	2009),	as	in	models	using	“response	traits”	(Lavorel	&	Garnier,	
2002) to predict abundance based on trait- environment relation-
ships	 along	 gradients	 (Laughlin,	 Joshi,	 van	 Bodegom,	 Bastow,	 &	
Fulé,	2012;	Shipley	et	al.,	2016).	Consequently,	we	expect	species	
distributions across environmental gradients to be correlated with 
species’	functional	traits.	At	regional	and	global	scales,	some	studies	
have	shown	that	realized	niche	boundaries	for	temperature	and	pre-
cipitation are linked to commonly measured traits (Laughlin et al., 
2012), while others have failed to detect such relationships (Moles 
et al., 2014).

Second, functional traits could scale up to influence biotic inter-
actions, and thus species co- occurrence patterns (Morueta- Holme 
et al., 2016; Soliveres et al., 2014). Individual plants may modulate 
their	 microenvironment,	 driving	 facilitation	 (Schöb,	 Butterfield,	 &	
Pugnaire,	2012)	and/or	competition	(Falster,	Brännström,	Westoby,	
& Dieckmann, 2017), leading to species with either shared or dis-
joint spatial distributions. Consideration of these effects could thus 
increase predictability if their direction and magnitude depend sys-
tematically on functional traits of the interacting species. Existing 
work suggests that such pairwise effects may arise either from trait 
differences (more similar species compete more strongly) (Herben 
&	 Goldberg,	 2014;	 Webb,	 Ackerly,	 McPeek,	 &	 Donoghue,	 2002;	

Wilson, 2007) or trait hierarchies (species with more extreme trait 
values compete more strongly) (Kunstler et al., 2012; Mayfield & 
Levine, 2010).

Third, functional traits could influence the vital rates of species 
that	in	turn	determine	community	dynamics	(Adler	et	al.,	2014;	Funk	
& Wolf, 2016; Kunstler et al., 2012, 2016; Visser et al., 2016; Wright 
et al., 2010). While some traits and environments may uniformly 
modulate fitness, most may be functional only in certain biotic or 
abiotic	contexts	(==REF	to	editorial==).	In	other	words,	species’	vital	
rates could be correlated with traits, microenvironment, trait by mi-
croenvironment interactions, and the traits and microenvironment 
of their neighbours. It has been difficult to elucidate mechanisms un-
derlying variation in vital rates, primarily due to the difficulty of ob-
taining detailed long- term datasets from natural plant communities. 
So far, empirical studies linking vital rates to traits have largely been 
restricted to direct effects, independent of context, e.g. Kunstler 
et al. (2012)—but see Baraloto, Goldberg, and Bonal (2005).

To explore whether functional traits and detailed microenvi-
ronmental data could improve the predictability of fine- scale com-
munity structure and dynamics, we use a dataset for alpine plants 
co- occurring on permanent plots in the Colorado Rocky Mountains. 
Over four annual censuses, we mapped every individual plant (seed-
lings and adults) in each plot and measured growth, survival, fecun-
dity and recruitment of every individual. We paired this demographic 
dataset with multiple below- ground and above- ground microenvi-
ronment variables measured at meter resolution within each plot. 
We also integrated below- ground and above- ground functional trait 
data for each species representative of key ecological strategy axes. 
We then used a set of regression analyses to determine whether in-
teractions between traits and microenvironment could predict fine- 
scale species distributions, co- occurrence metrics, and/or vital rates.

2  | MATERIAL S AND METHODS

2.1 | Site description

We established a long- term alpine research site in the Gunnison 
National	 Forest	 in	 Colorado	 (38.978725°N,	 107.042104°W)	
(Figure	1a).	 The	 site	 is	 located	 on	 a	 southeast-	facing	 ridgeline	 at	
c. 3,540 m above sea level and is on a c.	20%	slope	(Figure	1b).	The	
substrate is Mancos shale (Upper Cretaceous) at the downslope end, 
with	weak	gradation	at	 the	upslope	end	 to	quartz	monzonite	por-
phyry (Upper Eocene). On both rock types there is a surface layer 
of loose weathered gravel, with bedrock occurring at depths of no 
more than 5–10 cm. The site is primarily barren, with c. 0–10% cover 
by perennial graminoids, forbs and woody mat plants during the 
short summer growing season. Snow is deposited on the site nor-
mally	 beginning	 in	October,	 with	melting	 between	 June	 and	 July.	
Because the site is on a ridgeline, avalanches are rare, though strong 
west- to- east winds are common.

In the summer of 2014, we established a set of fifty 2 × 2 m 
permanent plots arranged in a grid 5 plots wide by 10 plots long, 
following the main ridge axis (c.	40°	heading),	with	a	2	×	2	m	buffer	
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between each plot. The overall site covers an 18 × 38 m rectangular 
area	(Figure	1c).

2.2 | Census data

Each year from 2014 to 2017 (n = 4), we censused each permanent 
plot when vegetative growth was complete and flowering was taking 
place,	typically	in	late	July	or	early	August.	Every	individual	plant	(in-
cluding seedlings) was located to the nearest centimetre in Cartesian 
coordinates relative to the lower left corner of each plot, and given a 
permanent aluminium tag nailed into nearby substrate. Species iden-
tities were determined based on a set of voucher specimens stored 

at the Rocky Mountain Biological Laboratory (“RMBL”) Herbarium. 
One species could not be identified (a single seedling that died in the 
same year) and was named “Indet indet”.

At	each	census,	we	recorded	a	set	of	demographic	parameters	
for	each	individual.	We	recorded	size	as	maximum	length	and	max-
imum height of vegetative parts (cm) using a ruler. Delineating indi-
viduals was not always possible, e.g. for grasses and sedges. Stems 
separated by more than 3 cm at ground height were assumed to 
represent different individuals, except in cases of large mat plants 
with branches clearly connected below ground level. We recorded 
whether individuals were new recruits, either as seedlings (with 
cotyledons present) or as vegetative/clonal propagation (with no 

F IGURE  1 The study site is located on a ridgeline in the Rocky Mountains of southwestern Colorado. (a) Maps of individuals across plots 
in 2015. Circles represent vegetative lengths of each individual and are coloured by species. Individuals that recruited are shown with a +, 
that died, with a ×; that flowered, with a △.	A	zoomed	version	of	this	panel,	with	four	years	of	data	and	with	legend	is	available	as	Figure	S1.	
(b) Photograph of 2 × 2 m plots, looking westward. (c) Relief map of the area, with the site location shown as a circle [Colour figure can be 
viewed at wileyonlinelibrary.com]
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cotyledons present, and possibly still connected to a parent). We 
estimated fecundity as the number of mature floral structures per 
individual (e.g. number of flowers for Viola praemorsa, number of in-
florescences	 for	Asteraceae,	 number	of	 spikelets	 for	Poaceae	and	
number of spikes for Lupinus argenteus). Individuals that were cen-
sused in 1 year but that failed to produce above- ground growth in 
a subsequent year were scored as either dormant or dead. If indi-
viduals failed to produce above- ground growth for more than two 
consecutive years, we assumed they were dead and removed their 
tag. Seedlings that germinated and then withered in the same year 
were scored as dead after a single year.

2.3 | Microenvironmental data

To explore spatially variable microenvironmental drivers, we mapped 
a large set of below- ground and above- ground factors describing 
physiography	and	disturbance.	Field	measurements	were	obtained	at	
each corner of each plot (2 m resolution) and then interpolated within 
each plot to produce a map at 10 cm resolution using ordinary kriging.

We	measured	substrate	surface	temperature	(°C)	using	datalog-
gers (iButton Thermochron DS1921G, Maxim) wrapped in gray duct 
tape to match the albedo of the substrate (Stark et al., 2017) and left 
at surface level. Loggers recorded data every 20 min between 13 
July	and	10	August	2016,	and	we	used	the	median	value	per	logger	
in subsequent analyses.

We measured local slope (m/m) using a clinometer and elevation 
by integrating clinometer measurements across the site. We then 
estimated	aspect	(°)	based	on	these	elevation	data.	We	measured	a	
proxy for disturbance intensity (m) as distance (based on Euclidean 
distance	transformation,	Zeller,	McGarigal,	&	Whiteley,	2012)	from	
a small animal trail that historically traversed the eastern side of the 
site.

Several	days	after	a	rain	event	in	July	2015	we	measured	shal-
low	 soil	 moisture	 (g/g)	 at	 3.8	cm	 depth	 using	 a	 FieldScout	 TDR	
100 probe (Spectrum Technologies) inserted into the upper soil 
layer. We also measured deep soil moisture (g/g) volumetrically on 
cores taken at up to 10 cm depth (depending on bedrock stratigra-
phy)	several	days	after	a	rain	event	in	July	2016.	The	soil	samples	
were	 dried	 at	 150°C	 for	 4	hr,	 after	which	 soil	 sieves	were	 used	
to quantify soil texture as dry mass fractions (g/g) of particles 
≥4	mm,	≥2	mm,	≥1	mm,	≥0.5	mm	and	≤0.5	mm.	We	then	measured	
soil chemical properties for a subset of 23 of the soil samples that 
evenly gridded the site. Bulk samples were ground to powder and 
measured for concentrations (ppm) of copper, iron, potassium, 
manganese,	phosphorus,	zinc,	total	nitrates/nitrogen	(%),	organic	
matter content (%), pH, and electrical conductivity (mmho/cm). 
Analyses	were	conducted	by	 the	Colorado	State	University	Soil,	
Water, and Plant Testing Lab.

We measured a proxy for hardness and fracturability of the soil 
as	soil	penetration	energy	density	(MJ/m3),	in	July	2015.	Values	were	
calculated as the gravitational potential energy required to hammer 
a	nail	(16-	penny	size)	flush	into	the	substrate,	divided	by	the	volume	
of the nail.

2.4 | Macroenvironmental data

To explore temporally variable drivers of community structure, we 
obtained annual climate data from 2013 to 2017 from the nearby 
(4.5 km distance) “Billy Barr” weather station, part of Environmental 
Protection	Agency	site	“GTH161”.	For	each	year	we	calculated	total	
precipitation	 from	 January	 through	 July	 (i.e.	 the	 majority	 of	 the	
snowpack water and summer rain).

2.5 | Functional trait data

To	characterize	species’	ecological	strategies,	we	measured	a	set	of	
below- ground and above- ground metrics. To avoid disturbance of 
the permanent plots, individuals of each species were selected from 
locations	 immediately	 adjacent	 to	 the	 permanent	 plots.	 For	 each	
species, we excavated 3–5 whole individual plants and root systems, 
and stored them in moist paper towels for rehydration in a cooler or 
refrigerator for no more than 24 hr before processing. We measured 
(in cm) above- ground maximum vegetative height, and maximum 
width, maximum root depth, maximum root length, and maximum 
extent of rooting. We floated a sample of fine (<2 mm diameter) 
roots in water and obtained a high- resolution digital image with a 
camera (Canon, T2i, 17–40 mm f/4L lens). We then hand- traced all 
roots	in	ImageJ	(NIH)	using	the	SmartRoot	plugin	and	obtained	es-
timates of total root length (mm), total root volume and mean root 
cross-sectional area (cm2). We dried these fine roots for 1 week at 
65°C	and	measured	their	dry	mass,	then	divided	root	length	by	dry	
mass to estimate specific root length (mm/g) and divided dry mass by 
volume to obtain root tissue density (g/cm3).

We clipped a small (c. 0.5 g) subsample of each root system into 
2- cm lengths, cleared it in a 10% KOH solution, stained it with a 
0.01% trypan blue solution (Koske & Gemma, 1989), and mounted 
it on microscope slides. We estimated prevalence of arbuscular my-
corrhizal	 fungi	 (AMF)	 (%),	and	dark-septate	endophyte	 fungi	 (DSE)	
(%) using the magnified intercept method (McGonigle, Miller, Evans, 
Fairchild,	&	Swan,	1990)	on	a	minimum	of	50	root	intersections.

We measured leaf traits for five leaves per individual: leaf lamina 
thickness (mm) using a micrometer (Tresna) and fresh leaf mass (g) 
using a balance. We obtained a digital image of each leaf (without 
petiole) using a scanner at 300 dpi resolution and estimated leaf 
area (cm2) as well as leaf aspect ratio (ratio of major and minor axis 
lengths	for	an	ellipse	fitted	to	leaf	silhouette).	For	compound	leaves	
we	included	all	leaflets	and	the	rachis.	We	dried	the	leaves	at	65°C	
for 1 week and measured their mass, to calculate specific leaf area 
(cm2/g) and leaf dry matter content (g/g).

We separated excavated plants into reproductive structures, 
leaves, stems, coarse roots (>2 mm diameter) and fine roots (<2 mm 
diameter), weighed each tissue type before drying, and estimating 
biomass fractions of leaves, stems, coarse roots and fine roots (g/g) 
as well as root dry matter content and stem dry matter content (g/g).

For	 a	 separate	 set	 of	 three	 leaves	 from	 a	 non-	harvested	 indi-
vidual, we measured per- mass photosynthetic capacity (light-satu-
rated photosynthetic rate) (μmol C g s−1). Using a LiCor 6400XT we 
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measured leaves while attached to the plant, under controlled con-
ditions at 1,500 μmol photosynthetically active radiation, 400 ppm 
CO2,	25°C	leaf	temperature	and	ambient	relative	humidity	(typically	
20–60%).	For	 species	with	 leaves	 smaller	 than	 the	 instrument	 cu-
vette, we measured the total leaf projected area enclosed in each 
cuvette	by	scanning	leaves	in	a	digital	scanner	as	above.	For	species	
with curled leaves (e.g. Ivesia gordonii), we multiplied leaf area by a 
scaling factor of two. We obtained an estimate of per- mass photo-
synthetic rate by multiplying raw per- area values by the area of the 
cuvette divided by the corrected leaf area and then further multiply-
ing by the specific leaf area of these samples.

We measured leaf carbon concentration (g/g), leaf nitrogen con-
centration, leaf δ13C and leaf δ15N on ground dried leaf samples from 
the	excavated	plants	using	a	PDZ	Europa	ANCA-	GSL	elemental	anal-
yser	interfaced	to	a	PDZ	Europa	20-	20	isotope	ratio	mass	spectrom-
eter	(Sercon	Ltd.,	Cheshire,	UK)	at	the	Stable	Isotope	Facility	at	the	
University of California Davis.

At	the	end	of	the	2015	growing	season,	we	sampled	10	mature	
fruits from fertile individuals of each species. We dissected fruits, 
dried all seeds (number of seeds per fruit, mean n = 29, SD = 25), and 
separated apparently fertile from aborted seeds. We then measured 
relative seed set as the fraction of fertile seeds. We measured mean 
seed mass (mg) by weighing a bulk sample of seeds and dividing by 
the seed count.

2.6 | Data summarization

To	 summarize	 microenvironments,	 we	 obtained	 predicted	 val-
ues for all variables on the kriged grid spanning the site and con-
ducted	 a	principal	 components	 analysis	 (PCA)	on	 these	data	 after	
z- transforming each variable. We retained principal components 
with eigenvalues greater than unity, and obtained predicted scores 
along these components at 10 cm gridded resolution.

For	realized	niches,	we	scored	species	presence	or	absence	at	each	
point on the 10 cm grid (n = 20,000 grid cells), assuming that each indi-
vidual was a circle with diameter equal to its maximum vegetative width 
in each year. We then obtained predicted microenvironment principal 
component scores at each grid point for which species were present. 
The	median	of	this	distribution	represents	the	realized	niche	centroid.

To	summarize	vital	rates,	we	defined	recruitment events when-
ever a new plant established as either a seedling or vegetative prop-
agule in a single year, growth rate as the change in vegetative length 
across a pair of years, mortality events whenever an individual died in 
a given year, and fecundity events as the number of floral structures 
produced in a single year (acknowledging that not all floral structures 
have equivalent effects on seed production and germination).

To	summarize	functional	traits,	we	calculated	species	means.	A	
small number of missing observations (68/540) were gap- filled using 
multiple imputation by chained equations (White, Royston, & Wood, 
2011).	We	conducted	a	PCA	on	trait	data	after	z- transforming vari-
ables, retained principal components with eigenvalues greater than 
unity (Legendre & Legendre, 2012), and obtained predicted scores 
along these components for each species.

To	 summarize	 species-	level	 trait	 neighbourhoods,	 we	 cal-
culated two metrics of pairwise trait differentiation for species 
mean functional trait principal component X and species m and 
n: absolute difference (|Xm−Xn|) and hierarchical difference (0, if 
Xm<Xn; Xm−Xn, otherwise).
To	 summarize	 individual-	level	 trait	 neighbourhoods,	 we	 de-

fined the crowding coefficient for each focal plant j as a sum over 
all other non- focal individuals k	whose	maximum	vegetative	sizes	
sk yielded circles of that diameter within 50 cm of the equivalent 
circle of the focal plant as 

∑

k ske
−djk∕δ, where djkis the distance 

between	 individuals’	 positions	 and	δ is a decay constant, set to 
20 cm. The value of the decay constant was chosen to roughly 
match the average below- ground root spreading distance in our 
trait	data	and	that	of	others	 (Chu	&	Adler,	2015).	We	calculated	
this coefficient for both intra- and interspecific neighbours. We 
defined the mean trait difference for each individual j,	as	a	size-	
weighted mean trait value around each focal individual minus the 
value	 of	 the	 focal	 individual’s	 trait	T, as 

∑

k
skTk∕

∑

k
sk−Tk, using 

the same 50 cm radius. We defined the mean trait hierarchy value 
for each individual j,	as	a	size-	weighted	mean	trait	value	around	
each focal individual as 

∑

k
skTk∕

∑

k
sk (using the same 50 cm ra-

dius)	 if	 this	 value	was	greater	 than	 the	 focal	 species’	 trait	 value	
Tk and 0 otherwise. These estimates of trait difference and trait 
hierarchy do include individual- level data of sk, but necessarily use 
species- mean values of Tk. While allometric scaling of trait values 
with	 plant	 size	 could	 potentially	 provide	 better	 individual-	level	
trait	 estimates,	 empirical	 size-	trait	 relationships	 were	 generally	
weak (data not shown).

2.7 | Statistical analysis

To	assess	covariation	between	traits	and	species’	realized	niches,	we	
used linear mixed models to determine whether niche centroids var-
ied with functional- trait principal components at the species level 
over years (n = 67). We included fixed effects for trait principal com-
ponents and a random intercept for year.

To estimate trait effects on pairwise co- occurrence, we first as-
sembled a matrix with rows corresponding to grid points and columns 
corresponding to the presence/absence of a vital rate event for each 
species across all 4 years of the study, and also for the predicted 
microenvironment principal component scores. We then calculated 
the partial correlation matrix of this matrix using a shrinkage esti-
mator (Morueta- Holme et al., 2016), setting weak coefficients with 
absolute magnitude <0.1 to 0. These partial correlations are direct 
associations	between	species’	vital	 rates	 that	cannot	be	explained	
by shared microenvironment requirements, and can tentatively be 
interpreted as biotic interactions (given the number of abiotic vari-
ables they are known not to represent). Coefficients closer to +1 
indicate	 facilitation,	coefficients	closer	 to	−1	 indicate	competition,	
and coefficients closer to 0 indicate no biotic processes. We then 
used linear regression to determine whether partial correlations be-
tween vital rate events could be predicted by the species- level trait 
neighbourhoods.
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To estimate trait and microenvironment effects on vital rates, 
we built linear mixed models of vital rates, treating recruitment and 
mortality as binomial- family models with logit link functions, growth 
as a Gaussian- family model with identity link function, and fecundity 
as Poisson- family model with log link function. Models for growth, 
fecundity and survival were fit to the set of individual demographic 
events across all 4 years as replicates. Because we only observed suc-
cessful rather than failed recruitments events, the model for recruit-
ment was fit using a dataset constructed from the subset of observed 
recruitment events, paired to a set of pseudo- failed recruitment 
events located in random locations across the plots where no recruit-
ment of the focal species was observed. The number of pseudo- failed 
recruitment events was chosen to match the number of successful re-
cruitment	events	for	each	species	within	each	year.	For	survival	mod-
els, individuals that died before census in a given year (i.e. assigned 
a	size	of	0)	were	re-	assigned	their	prior-	year	size	(in	order	to	prevent	
model	under-	identification	while	still	using	size	as	a	fixed	effect).	The	
overall structure of the fixed effects in the full model took the form:

The	model	 also	 included	 random	 intercept	 and	 size-	dependent	
slope for each species, reflecting the hierarchical structure of the 
data.	 The	 random	 slope	 for	 size	 was	 omitted	 for	 the	 recruitment	
model	 because	 propagule	 size	would	 always	 be	 0	 or	missing	 for	 a	
failed recruitment event. We did not include random intercepts for 
year (as it had few levels, and was correlated with the macroclimate 
data) or for plot (as it was correlated with the microenvironmen-
tal data). Only three principal components were included for each 
type of variable to limit the total number of fixed effects estimated 
(n = 218).	All	predictors	were	z- transformed before analysis to enable 
interpretation of regression coefficients as effect strengths in units 
of standard deviations.

For	the	mixed	models	we	reported	standardized	coefficients	for	
fixed effects as the mean coefficient estimate, approximate p- values 
using	 Type	 III	 ANOVA	with	Wald	 chi-	square	 tests,	 and	 an	 overall	
model marginal or conditional R2 as the sum of the fraction of vari-
ance explained by the fixed or fixed + random effects (Nakagawa & 
Schielzeth,	2013).

We conducted all analyses in r 3.3.3. Multiple imputation was per-
formed using the mice package. Spatial analyses were conducted using 
the raster and sp packages. Partial correlations were estimated with 
the corpcor package. Mixed models were built and evaluated using 
the lme4, piecewisesem, and car	 packages.	All	 data	 (microenvironment,	
traits, censuses and vital rates) are deposited in the Dryad repository 
(Blonder, 2018).

3  | RESULTS

3.1 | Patterns and trends

Permanent plots contained a mean of n = 40 (56 SD, max. 442) in-
dividuals of mean n = 6 (3 SD,	 max.	 15)	 species	 (Figure	1c).	 Over	
4 years, a total of 4,290 growth events, 1,422 mortality events, 
1,464 recruitment events, and 1,691 fecundity events were re-
corded	across	18	species	(Figures	S1	and	S2).

The	microenvironment	varied	extensively	across	plots	(Figure	2a;	
Table S1). The 23 microenvironment variables had five principal com-
ponent	axes	taking	eigenvalues	above	unity	(Figure	2b).	Variation	in	
the first axis (35% of the variance) described a gradient of moister, 
more fine- textured soils, with higher concentrations of manganese, 
phosphorus and nitrates/nitrogen, and lower pH and potassium con-
centrations	 (absolute	 loadings	 >0.25)	 (Figure	2c).	 Variation	 in	 the	
second axis (23% of the variance) described greater disturbance, and 
higher soil organic matter, electrical conductivity, and iron and cop-
per concentrations, as well as lower soil penetration energy density 
(Figure	2d).

The macroenvironment at the site also varied across years 
(Table S2), with 2016 being drier, 2015 being wetter and 2014 and 
2017 being closer to average.

Functional	 traits	 of	 species	 present	 at	 the	 site	 varied	 along	
multiple	 principal	 component	 axes	 (Figure	3a).	 The	 30	 orig-
inal traits loaded onto 10 axes taking eigenvalues above unity 
(Figure	3b;	Table	S3).	Variation	in	the	first	axis	(19%	of	the	vari-
ance)	 corresponded	 to	 larger	 size,	 as	 well	 as	 lower	 stem	 bio-
mass fraction, and shorter root length (absolute loadings > 0.25) 
(Figure	3c).	Variation	in	the	second	axis	(17%	of	the	variance)	cor-
responded to more extensive and thicker roots, as well as lower 
stem and leaf dry matter content and lower specific root length 
(Figure	3d).

3.2 | Realized niches

We found that species occupied different portions of the microen-
vironmental space at the study site along the leading principal com-
ponent	axes	(Figure	4a).	Most	species	occupied	a	core	central	region	
in the microenvironmental space, but several species occupied 
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average and redder colours indicating values above average (note some variables have skewed distributions). (b) Biplot of principal components 
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outlying regions (e.g. Viola praemorsa and Carex siccata). Clear inter-
annual variation was not visually evident.

A	linear	mixed	model	of	the	first	microenvironment	niche	axis	
centroid including the first ten trait principal components as fixed 
effects revealed a close association between functional traits and 
species’	fine-	scale	distributions.	All	axes	were	significant	except	for	
PC2 and PC3 (p > .05). The fixed effects jointly explained 76% of 
the variance in niche centroid value, with no increase in variance 

attributable	to	year	effects.	A	similar	model	for	the	second	micro-
environment niche axis centroid had fixed effects explaining 81% 
of the variation.

Strong trait- environment covariation was readily evident in a 
scatterplot of the first two trait and microenvironment principal 
components	(Figure	4b).	These	patterns	are	consistent	with	a	lead-
ing (but only partial) role for finer textured and richer soils filtering 
for species with fast growth and long roots.

F IGURE  3 Variation in functional traits across all species in the plots. (a) Biplot of principal components analysis of trait values across all grid 
cells. Leading principal component axes are shown in red and species scores are shown in blue. (b) Screeplot of fractional variance explained by 
each of the leading principal component axes. Only axes with eigenvalues >1 are shown. (c, d) Loadings for the first two principal component 
axes. Purple vertical lines indicate thresholds chosen for significance [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Co- occurrence patterns

The matrix of partial correlations among demographic events had 
a	 small	 fraction	 of	 non-	zero	 coefficients	 (224/5112	 possible	 links	

non-	zero)	(Figure	5a).	Most	of	these	coefficients	were	positive	(170	
positive vs. 64 negative), and positive coefficients were on average 
twice as large as negative coefficients. Inter-  and intraspecific coeffi-
cients occurred at approximately equal frequencies and magnitudes 

F IGURE  4  (a)	Realized	niches	for	all	species	using	2017	data,	for	the	first	and	second	microenvironment	principal	component	axes.	
Points indicate median values, and line segments indicate inter- quartile range. Data are not shown for other years as they are very similar. 
(b) Partial residual plot for each the first two leading microenvironment principal components for the first two (of ten) leading trait principal 
components. Points indicate species- mean/environmental- median values, and regression lines indicate relationships fit for each year. Lines 
are overlapping due to the high inter- annual similarity [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE  5  (a) Partial correlations 
between	species’	distributions	for	
different vital rates, pooled across all four 
years. Edge strength indicates the direct 
effect	of	one	taxon	on	another	taxon’s	
distribution after taking into account 
the effect of shared microenvironment 
and	all	other	species’	distributions.	Blue	
edges indicate positive association; 
red, negative. Edge weight indicates 
magnitude of the partial correlation. 
Names are abbreviated using the first 
three letters of the genus and species 
for visual clarity. (b) Summary of the 
number and magnitude of partial 
correlation coefficients for interspecific 
vs. intraspecific and positive vs. negative 
categories (black) and among different 
vital rate pairs (gray). (c) Pairwise 
relationships between partial correlation 
coefficients and either trait hierarchies 
(orange) or differences (purple) for each 
vital rate pair [Colour figure can be viewed 
at wileyonlinelibrary.com]
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for both positive and negative coefficients. Recruitment- fecundity 
and survival- fecundity coefficients were consistently negative, 
while all others were generally positive. Most coefficients described 
growth-	recruitment	and	growth-	fecundity	correlations	(Figure	5b).

We then determined whether trait differences or hierarchies in 
either trait PC1 or trait PC2 predicted partial regression coefficients. 
There was no significant relationship between these four variables 
for the majority of the vital rate pairs (p > .05)	(Figure	5c).	Exceptions	
occurred for survival- growth (R2 = .04), growth- recruitment 
(R2 = .12), growth- fecundity (R2 = .15) and recruitment- fecundity 
(R2 = .07). The effect of trait distance PC1 and PC2, as well as trait 
hierarchy PC1 was significant for each of these models.

3.4 | Vital rates

Variation in all vital rates was associated with variation in a combi-
nation	of	size,	functional	trait,	microenvironment,	macroenvironment	
and neighbourhood variables, as well as interactions between these 
variable	types	(Figure	6a).	Larger	plants	had	uniformly	greater	growth,	
survival and fecundity rates. There were saturating (negative quad-
ratic)	effects	of	size	on	survival	and	fecundity,	but	not	on	growth.

The macroenvironment (prior precipitation) had a positive ef-
fect on survival, but no effect on growth, fecundity or recruitment. 
The microenvironment had only weak direct effects on vital rates 

except fecundity and recruitment, which increased along PC1 and 
decreased along PC2.

Functional	traits	of	species	affected	vital	rates	in	a	variety	of	ways.	
Growth was higher for species with lower values of PC2. No trait axis 
directly	affected	survival.	Fecundity	was	lower	for	higher	values	of	PC2	
and PC3. Recruitment was higher for higher values of PC1 and PC3.

Vital rates also depended on neighbour effects. Greater in-
traspecific crowding increased survival, fecundity and especially 
recruitment rates. Greater interspecific crowding also increased re-
cruitment rates, but otherwise had no effect on other vital rates.

In all models, interactions between variables were more common 
than	were	main	effects.	 For	 the	growth	model,	 11	of	15	 significant	
effects were interactions; for survival, 8 of 13; fecundity, 109 of 121, 
recruitment,	38	of	48.	Across	all	types	of	interactions,	significant	inter-
action terms occurred approximately as frequently as significant main 
effect terms relative to the number of possible terms (24% [SD 40%] 
for interaction terms, 40% [SD 35%] for main effect terms, p = .09 [t 
test])	(Figure	6b).	Significant	interaction	terms	occurred	among	all	vari-
able types for all vital rates, and were approximately equally common 
across variable types. However, the sign and magnitude of each effect 
were heterogeneous across variable types, challenging interpretation.

Overall, all vital rates were well- explained by the variables we 
investigated. The model for growth explained 41% of variation from 
fixed effects alone, and 56% of variation when also including random 

F IGURE  6  (a)	Effect	of	different	size,	trait,	microenvironment,	macroenvironment	and	neighbourhood	predictors	on	each	vital	rate.	Grid	
colour	indicates	effect	sign:	bluer,	more	positive;	redder,	more	negative.	Effect	sizes	are	scaled	to	unit	range	within	each	vital	rate.	Only	
statistically significant effects are coloured. (b) Summary of the fraction of variables within each category and vital rate that are statistically 
significant	(normalized	to	the	number	of	possible	variables	within	each	category) [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)
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effects; for survival, 57% or 69%; for fecundity, 60% or 93%; and for 
recruitment, 97% or 97%.

4  | DISCUSSION

The structure and dynamics of an alpine plant community were 
closely tied to functional traits of the resident species and their mi-
croenvironments. This supports the central hypothesis that better 
incorporating these factors into models can improve the predict-
ability of community ecology. In the following, we discuss several 
general conceptual implications of these findings that are relevant 
beyond the immediate study site.

We demonstrated strong microenvironmental control of species 
distributions. Importantly, the distribution of each species at this 
fine scale was strongly associated with species- mean functional trait 
values. These results suggest that much of the apparent stochastic-
ity in fine- scale community structure is actually deterministic, and 
can be predicted based on trait- based species sorting. In particu-
lar, we found strong relationships between several below- ground- 
microenvironment variables and several below- ground traits, 
consistent with a growing recognition of the importance of below- 
ground	processes	(Laliberté,	2017).

The fine- scale distributions of species were not random, but de-
pended both on environmental conditions and on the distribution of 
interacting species. Importantly, we showed that many species had 
spatial distributions that were strongly associated with other spe-
cies’	spatial	distributions	after	accounting	for	the	effects	of	shared	
microenvironmental requirements. These associations varied across 
species and vital rates, but were almost always positive. However, 
trait differences or trait hierarchies amongst species could rarely 
predict these associations. Thus, pairwise relationships between 
species’	functional	traits	do	not	seem	to	provide	insight	into	these	
co- occurrence patterns. Rather, traits seem to mediate occurrence 
patterns independently via the microenvironmental partitioning ex-
plored in the analyses above.

We showed that key vital rates are not stochastic, and are pre-
dictable from measurable parameters. The large component of 
variance attributed to random effects for fecundity suggests that 
other unmeasured factors differentially affect taxa, e.g. differential 
florivory, while other unmeasured or random factors, e.g. random 
vegetative herbivory may have caused the lower amount of variance 
explained for growth. Nevertheless, measured factors provide a 
mostly complete explanation for survival, fecundity and recruitment 
rates, and are also capable of explaining a large fraction of variation 
in growth rates.

However, predictability of vital rates did not arise solely from 
the main effects of each variable, but primarily from a wide set of 
interactions between variable types. With respect to vital rates, we 
showed that growth, survival, fecundity and recruitment could be 
predicted by a combination of functional traits, microenvironment, 
macroenvironment and neighbourhood effects (reflecting both trait- 
mediated and non- trait- mediated interactions). This finding suggests 

that the functional significance of traits is highly context dependent 
(==REF	to	editorial==).	This	might	explain	why	partial	correlation	co-
efficients did not appear to be linked to traits after accounting for 
context- independent dependencies on environment. This may also 
explain why previous studies of co- occurrence also had limited suc-
cess in explaining the observed patterns, e.g. Morueta- Holme et al. 
(2016).	Additionally,	the	functional	significance	of	each	trait	varied	
across vital rates. Relationships between traits and fitness are not 
necessarily simple, because traits had contrasting effects on dif-
ferent vital rates, and each of these effects had different context 
dependence. Thus, much of the variation in the importance of traits 
for demography, and ultimately fitness, may arise from inability to 
quantify trait interactions with neighbours, microenvironment and 
macroenvironment,	 e.g.	 Adler	 et	al.	 (2014);	 Kunstler	 et	al.	 (2016);	
Visser et al. (2016)—but see Lasky et al. (2015).

At	our	study	site,	facilitative	processes	appear	to	play	a	key	role	
in structuring community dynamics. Evidence for facilitation arose 
from two sets of results: first, the high prevalence of positive asso-
ciations	between	species’	distributions	that	could	not	be	explained	
by shared microenvironmental requirements, and second, the con-
sistent positive effects of intraspecific (and sometimes interspecific) 
neighbourhood density on multiple vital rates. In contrast, we failed 
to detect strong evidence for competitive interactions in this sys-
tem, consistent with the proposed greater importance of facilitation 
as stress increases (Callaway et al., 2002). This finding builds on a 
growing body of evidence that facilitation can be a strong mecha-
nism structuring community dynamics, as seen in other desert and 
alpine	 communities	 (Butterfield,	 2009;	McIntire	 &	 Fajardo,	 2014).	
This finding is important because many models of community dy-
namics assume that all interactions between species are purely com-
petitive	 (e.g.	Barabás,	Michalska-	Smith,	&	Allesina,	2016;	Saavedra	
et al., 2017). Indeed, no existing trait- based models of species in-
teractions	yield	facilitative	interactions.	For	example,	both	the	trait	
difference and trait hierarchy hypotheses we explored here yield 
only competitive outcomes. Better incorporating both positive and 
negative interactions into trait- based community ecology is an open 
challenge	(Wright,	Schnitzer,	&	Reich,	2014).

Environmental filtering and biotic interactions are often con-
sidered as independent processes driving community assem-
bly	 (HilleRisLambers,	 Adler,	 Harpole,	 Levine,	 &	 Mayfield,	 2012).	
However, this study suggests that, at fine scales, there may be no 
clear boundary between environmental filtering and biotic interac-
tions (Soberón & Nakamura, 2009). When individuals modify their 
local microenvironments, e.g. by changing moisture, light, or thermal 
conditions, environmental and biotic- interaction processes are no 
longer independent, but rather interactive. We found evidence for 
trait—environment—neighbourhood interactions in vital rate regres-
sions,	as	well	as	positive	associations	between	individuals’	fine-	scale	
distributions,	which	are	all	consistent	with	this	scenario.	Additionally,	
this scenario would challenge community ecology frameworks that 
attempt to partition patterns into abiotic environmental filtering 
and biotic interaction components, e.g. (Swenson & Enquist, 2009; 
Webb et al., 2002).
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The number of variables measured in this study required a level 
of effort likely beyond most practical situations in which predic-
tions of community dynamics will be desired. It remains unclear 
how many (and which) variables must be measured before an ac-
ceptable level of predictability is achieved. It is possible that the 
high predictability obtained in this study is a result of model over- 
fitting. On the other hand, the variables measured were largely 
mutually uncorrelated and could each be argued to have important 
functional roles. Much larger datasets might be able to resolve this 
question, but only at the cost of dramatically increased sampling 
effort. Even with the large number of demographic observations in 
this dataset, we were limited to modelling vital rates based on only 
the leading trait and microenvironment axes because of the rapid 
increase in the number of interaction terms with number of axes 
relative to the limited possible degrees of freedom in the data. Thus, 
a balance needs to be struck between large exploratory analyses 
such as this one, and the overly simplistic single-axis analyses that 
have	largely	characterized	the	field	(==REF	to	editorial==).	Rather,	
it may be useful to develop more mechanistic trait- based models 
of plant performance and population dynamics that could explore 
the implications of multidimensional trait variation on community 
structure and dynamics across contexts.

Several of our findings point to important roles for below- ground 
traits and microenvironment axes. Root traits like specific root length 
and maximum root length were associated with the leading axes of trait 
variation, and soil properties like penetration energy density, texture 
and pH were associated with the leading axes of microenvironment 
variation. Our study indicates that the predictability of community 
structure and dynamics is improved by the inclusion of below- ground 
variables	 (Laliberté,	 2017;	 McCormack,	 Lavely,	 &	 Ma,	 2014).	 The	
observed	 linkages	 among	 below-	ground	 factors	may	 generalize	 be-
yond alpine sites, and also extend other studies that have identified 
physiographic drivers of species distributions (Clark, Palmer, & Clark, 
1999) to the community scale. Nevertheless, such measurements are 
time- intensive and often destructive (e.g. excavation of whole root 
systems). To circumvent these issues, there is a need for further de-
veloping	below-	ground	trait	databases	(Freschet	et	al.,	2017;	Iversen	
et	al.,	2017)	and	fine-	scale	soil	maps	(Arrouays	et	al.,	2014).

The main conclusion of this study is that the predictability of 
community structure and dynamics can be improved by account-
ing for multivariate microenvironmental heterogeneity, and the 
context- dependence of functional traits, especially below- ground. 
Incorporating microenvironment and context into trait- based ecol-
ogy may provide more powerful approaches for understanding com-
munities, though at greatly increased effort.
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