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Abstract
1.	 Predicting the structure and dynamics of communities is difficult. Approaches 

linking functional traits to niche boundaries, species co-occurrence and demogra-
phy are promising, but have so far had limited success.

2.	 We hypothesized that predictability in community ecology could be improved by 
incorporating more accurate measures of fine-scale environmental heterogeneity 
and the context-dependent function of traits. We tested these hypotheses using 
long term whole-community demography data from an alpine plant community in 
Colorado.

3.	 Species distributions along microenvironmental gradients covaried with traits im-
portant for below-ground processes. Positive associations between species distri-
butions across life stages could not be explained by abiotic microenvironment 
alone, consistent with facilitative processes. Rates of growth, survival, fecundity 
and recruitment were predicted by the direct and interactive effects of trait, mi-
croenvironment, macroenvironment and neighbourhood axes.

4.	 Synthesis. Context-dependent interactions between multiple traits and microenvi-
ronmental axes are needed to predict fine-scale community structure and 
dynamics.

K E Y W O R D S

Below-ground processes, biotic interactions, demography, environmental filtering, facilitation, 
functional trait, interaction network, microclimate

1  | INTRODUC TION

A long-standing challenge for ecological theory has been to predict 
the structure and dynamics of plant communities from basic prin-
ciples (Keddy, 1992; Weiher et al., 2011). At large spatial scales, 
species assemblages can be predicted by relatively simple models 

of species sorting and niches (von Humboldt & Bonpland, 1807 
(tr. 2009); Whittaker, 1967), but this becomes challenging at finer 
scales. Biotic interactions or neutral processes may play increasingly 
important roles (McGill, 2010), leading to the apparently stochastic 
loss and gain of species, and thus reduced predictability of commu-
nity structure (Vellend, 2010). Consequently, community ecology 
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is often perceived as a “mess” (Lawton, 1999), with many research-
ers abandoning fine-scale prediction. However, delineating when 
prediction is possible is a necessary prerequisite for determining 
if investing in collecting sufficient data for predictive modelling is 
worthwhile, e.g. for climate change, invasion and land management 
applications (Blonder et al., 2017).

Here, we hypothesize that much of the apparent stochastic-
ity in community structure and dynamics is due to deterministic 
environmental heterogeneity at fine spatial scales (Butterfield, 
2009; Ellsworth & Reich, 1992; Stark, Lehman, Crawford, Enquist, 
& Blonder, 2017). Many studies have identified edaphic and mi-
croclimatic variables driving species distributions (Asner, Knapp, 
Anderson, Martin, & Vaughn, 2016; Kobe, 1999; Simpson, 
Richardson, & Laughlin, 2016) that often vary more within a few me-
tres at a single site than the mean values across sites separated by 
kilometers (Opedal, Armbruster, & Graae, 2015; Scherrer & Körner, 
2011; Stark et al., 2017). Thus, microenvironmental heterogeneity 
could impact both current community structure and community dy-
namics over time.

We also hypothesize that much of the variation in species’ re-
sponses to microclimatic variation is mediated by the context-
dependent function of traits. A long research program has argued 
for environmental sensitivity of functional traits which in turn affect 
performance and ultimately fitness (Arnold, 1983). These linkages 
are often explored in terms of direct effects of each variable, al-
though interactive effects may be more important. Thus, incorporat-
ing interactions between functional traits and the microenvironment 
may improve predictability of communities.

Trait-mediated effects on community dynamics could arise 
in several ways. First, functional traits may influence the realized 
niche boundaries or physiological tolerances of species (Violle & 
Jiang, 2009), as in models using “response traits” (Lavorel & Garnier, 
2002) to predict abundance based on trait-environment relation-
ships along gradients (Laughlin, Joshi, van Bodegom, Bastow, & 
Fulé, 2012; Shipley et al., 2016). Consequently, we expect species 
distributions across environmental gradients to be correlated with 
species’ functional traits. At regional and global scales, some studies 
have shown that realized niche boundaries for temperature and pre-
cipitation are linked to commonly measured traits (Laughlin et al., 
2012), while others have failed to detect such relationships (Moles 
et al., 2014).

Second, functional traits could scale up to influence biotic inter-
actions, and thus species co-occurrence patterns (Morueta-Holme 
et al., 2016; Soliveres et al., 2014). Individual plants may modulate 
their microenvironment, driving facilitation (Schöb, Butterfield, & 
Pugnaire, 2012) and/or competition (Falster, Brännström, Westoby, 
& Dieckmann, 2017), leading to species with either shared or dis-
joint spatial distributions. Consideration of these effects could thus 
increase predictability if their direction and magnitude depend sys-
tematically on functional traits of the interacting species. Existing 
work suggests that such pairwise effects may arise either from trait 
differences (more similar species compete more strongly) (Herben 
& Goldberg, 2014; Webb, Ackerly, McPeek, & Donoghue, 2002; 

Wilson, 2007) or trait hierarchies (species with more extreme trait 
values compete more strongly) (Kunstler et al., 2012; Mayfield & 
Levine, 2010).

Third, functional traits could influence the vital rates of species 
that in turn determine community dynamics (Adler et al., 2014; Funk 
& Wolf, 2016; Kunstler et al., 2012, 2016; Visser et al., 2016; Wright 
et al., 2010). While some traits and environments may uniformly 
modulate fitness, most may be functional only in certain biotic or 
abiotic contexts (==REF to editorial==). In other words, species’ vital 
rates could be correlated with traits, microenvironment, trait by mi-
croenvironment interactions, and the traits and microenvironment 
of their neighbours. It has been difficult to elucidate mechanisms un-
derlying variation in vital rates, primarily due to the difficulty of ob-
taining detailed long-term datasets from natural plant communities. 
So far, empirical studies linking vital rates to traits have largely been 
restricted to direct effects, independent of context, e.g. Kunstler 
et al. (2012)—but see Baraloto, Goldberg, and Bonal (2005).

To explore whether functional traits and detailed microenvi-
ronmental data could improve the predictability of fine-scale com-
munity structure and dynamics, we use a dataset for alpine plants 
co-occurring on permanent plots in the Colorado Rocky Mountains. 
Over four annual censuses, we mapped every individual plant (seed-
lings and adults) in each plot and measured growth, survival, fecun-
dity and recruitment of every individual. We paired this demographic 
dataset with multiple below-ground and above-ground microenvi-
ronment variables measured at meter resolution within each plot. 
We also integrated below-ground and above-ground functional trait 
data for each species representative of key ecological strategy axes. 
We then used a set of regression analyses to determine whether in-
teractions between traits and microenvironment could predict fine-
scale species distributions, co-occurrence metrics, and/or vital rates.

2  | MATERIAL S AND METHODS

2.1 | Site description

We established a long-term alpine research site in the Gunnison 
National Forest in Colorado (38.978725°N, 107.042104°W) 
(Figure 1a). The site is located on a southeast-facing ridgeline at 
c. 3,540 m above sea level and is on a c. 20% slope (Figure 1b). The 
substrate is Mancos shale (Upper Cretaceous) at the downslope end, 
with weak gradation at the upslope end to quartz monzonite por-
phyry (Upper Eocene). On both rock types there is a surface layer 
of loose weathered gravel, with bedrock occurring at depths of no 
more than 5–10 cm. The site is primarily barren, with c. 0–10% cover 
by perennial graminoids, forbs and woody mat plants during the 
short summer growing season. Snow is deposited on the site nor-
mally beginning in October, with melting between June and July. 
Because the site is on a ridgeline, avalanches are rare, though strong 
west-to-east winds are common.

In the summer of 2014, we established a set of fifty 2 × 2 m 
permanent plots arranged in a grid 5 plots wide by 10 plots long, 
following the main ridge axis (c. 40° heading), with a 2 × 2 m buffer 
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between each plot. The overall site covers an 18 × 38 m rectangular 
area (Figure 1c).

2.2 | Census data

Each year from 2014 to 2017 (n = 4), we censused each permanent 
plot when vegetative growth was complete and flowering was taking 
place, typically in late July or early August. Every individual plant (in-
cluding seedlings) was located to the nearest centimetre in Cartesian 
coordinates relative to the lower left corner of each plot, and given a 
permanent aluminium tag nailed into nearby substrate. Species iden-
tities were determined based on a set of voucher specimens stored 

at the Rocky Mountain Biological Laboratory (“RMBL”) Herbarium. 
One species could not be identified (a single seedling that died in the 
same year) and was named “Indet indet”.

At each census, we recorded a set of demographic parameters 
for each individual. We recorded size as maximum length and max-
imum height of vegetative parts (cm) using a ruler. Delineating indi-
viduals was not always possible, e.g. for grasses and sedges. Stems 
separated by more than 3 cm at ground height were assumed to 
represent different individuals, except in cases of large mat plants 
with branches clearly connected below ground level. We recorded 
whether individuals were new recruits, either as seedlings (with 
cotyledons present) or as vegetative/clonal propagation (with no 

F IGURE  1 The study site is located on a ridgeline in the Rocky Mountains of southwestern Colorado. (a) Maps of individuals across plots 
in 2015. Circles represent vegetative lengths of each individual and are coloured by species. Individuals that recruited are shown with a +, 
that died, with a ×; that flowered, with a △. A zoomed version of this panel, with four years of data and with legend is available as Figure S1. 
(b) Photograph of 2 × 2 m plots, looking westward. (c) Relief map of the area, with the site location shown as a circle [Colour figure can be 
viewed at wileyonlinelibrary.com]
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cotyledons present, and possibly still connected to a parent). We 
estimated fecundity as the number of mature floral structures per 
individual (e.g. number of flowers for Viola praemorsa, number of in-
florescences for Asteraceae, number of spikelets for Poaceae and 
number of spikes for Lupinus argenteus). Individuals that were cen-
sused in 1 year but that failed to produce above-ground growth in 
a subsequent year were scored as either dormant or dead. If indi-
viduals failed to produce above-ground growth for more than two 
consecutive years, we assumed they were dead and removed their 
tag. Seedlings that germinated and then withered in the same year 
were scored as dead after a single year.

2.3 | Microenvironmental data

To explore spatially variable microenvironmental drivers, we mapped 
a large set of below-ground and above-ground factors describing 
physiography and disturbance. Field measurements were obtained at 
each corner of each plot (2 m resolution) and then interpolated within 
each plot to produce a map at 10 cm resolution using ordinary kriging.

We measured substrate surface temperature (°C) using datalog-
gers (iButton Thermochron DS1921G, Maxim) wrapped in gray duct 
tape to match the albedo of the substrate (Stark et al., 2017) and left 
at surface level. Loggers recorded data every 20 min between 13 
July and 10 August 2016, and we used the median value per logger 
in subsequent analyses.

We measured local slope (m/m) using a clinometer and elevation 
by integrating clinometer measurements across the site. We then 
estimated aspect (°) based on these elevation data. We measured a 
proxy for disturbance intensity (m) as distance (based on Euclidean 
distance transformation, Zeller, McGarigal, & Whiteley, 2012) from 
a small animal trail that historically traversed the eastern side of the 
site.

Several days after a rain event in July 2015 we measured shal-
low soil moisture (g/g) at 3.8 cm depth using a FieldScout TDR 
100 probe (Spectrum Technologies) inserted into the upper soil 
layer. We also measured deep soil moisture (g/g) volumetrically on 
cores taken at up to 10 cm depth (depending on bedrock stratigra-
phy) several days after a rain event in July 2016. The soil samples 
were dried at 150°C for 4 hr, after which soil sieves were used 
to quantify soil texture as dry mass fractions (g/g) of particles 
≥4 mm, ≥2 mm, ≥1 mm, ≥0.5 mm and ≤0.5 mm. We then measured 
soil chemical properties for a subset of 23 of the soil samples that 
evenly gridded the site. Bulk samples were ground to powder and 
measured for concentrations (ppm) of copper, iron, potassium, 
manganese, phosphorus, zinc, total nitrates/nitrogen (%), organic 
matter content (%), pH, and electrical conductivity (mmho/cm). 
Analyses were conducted by the Colorado State University Soil, 
Water, and Plant Testing Lab.

We measured a proxy for hardness and fracturability of the soil 
as soil penetration energy density (MJ/m3), in July 2015. Values were 
calculated as the gravitational potential energy required to hammer 
a nail (16-penny size) flush into the substrate, divided by the volume 
of the nail.

2.4 | Macroenvironmental data

To explore temporally variable drivers of community structure, we 
obtained annual climate data from 2013 to 2017 from the nearby 
(4.5 km distance) “Billy Barr” weather station, part of Environmental 
Protection Agency site “GTH161”. For each year we calculated total 
precipitation from January through July (i.e. the majority of the 
snowpack water and summer rain).

2.5 | Functional trait data

To characterize species’ ecological strategies, we measured a set of 
below-ground and above-ground metrics. To avoid disturbance of 
the permanent plots, individuals of each species were selected from 
locations immediately adjacent to the permanent plots. For each 
species, we excavated 3–5 whole individual plants and root systems, 
and stored them in moist paper towels for rehydration in a cooler or 
refrigerator for no more than 24 hr before processing. We measured 
(in cm) above-ground maximum vegetative height, and maximum 
width, maximum root depth, maximum root length, and maximum 
extent of rooting. We floated a sample of fine (<2 mm diameter) 
roots in water and obtained a high-resolution digital image with a 
camera (Canon, T2i, 17–40 mm f/4L lens). We then hand-traced all 
roots in ImageJ (NIH) using the SmartRoot plugin and obtained es-
timates of total root length (mm), total root volume and mean root 
cross-sectional area (cm2). We dried these fine roots for 1 week at 
65°C and measured their dry mass, then divided root length by dry 
mass to estimate specific root length (mm/g) and divided dry mass by 
volume to obtain root tissue density (g/cm3).

We clipped a small (c. 0.5 g) subsample of each root system into 
2-cm lengths, cleared it in a 10% KOH solution, stained it with a 
0.01% trypan blue solution (Koske & Gemma, 1989), and mounted 
it on microscope slides. We estimated prevalence of arbuscular my-
corrhizal fungi (AMF) (%), and dark-septate endophyte fungi (DSE) 
(%) using the magnified intercept method (McGonigle, Miller, Evans, 
Fairchild, & Swan, 1990) on a minimum of 50 root intersections.

We measured leaf traits for five leaves per individual: leaf lamina 
thickness (mm) using a micrometer (Tresna) and fresh leaf mass (g) 
using a balance. We obtained a digital image of each leaf (without 
petiole) using a scanner at 300 dpi resolution and estimated leaf 
area (cm2) as well as leaf aspect ratio (ratio of major and minor axis 
lengths for an ellipse fitted to leaf silhouette). For compound leaves 
we included all leaflets and the rachis. We dried the leaves at 65°C 
for 1 week and measured their mass, to calculate specific leaf area 
(cm2/g) and leaf dry matter content (g/g).

We separated excavated plants into reproductive structures, 
leaves, stems, coarse roots (>2 mm diameter) and fine roots (<2 mm 
diameter), weighed each tissue type before drying, and estimating 
biomass fractions of leaves, stems, coarse roots and fine roots (g/g) 
as well as root dry matter content and stem dry matter content (g/g).

For a separate set of three leaves from a non-harvested indi-
vidual, we measured per-mass photosynthetic capacity (light-satu-
rated photosynthetic rate) (μmol C g s−1). Using a LiCor 6400XT we 
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measured leaves while attached to the plant, under controlled con-
ditions at 1,500 μmol photosynthetically active radiation, 400 ppm 
CO2, 25°C leaf temperature and ambient relative humidity (typically 
20–60%). For species with leaves smaller than the instrument cu-
vette, we measured the total leaf projected area enclosed in each 
cuvette by scanning leaves in a digital scanner as above. For species 
with curled leaves (e.g. Ivesia gordonii), we multiplied leaf area by a 
scaling factor of two. We obtained an estimate of per-mass photo-
synthetic rate by multiplying raw per-area values by the area of the 
cuvette divided by the corrected leaf area and then further multiply-
ing by the specific leaf area of these samples.

We measured leaf carbon concentration (g/g), leaf nitrogen con-
centration, leaf δ13C and leaf δ15N on ground dried leaf samples from 
the excavated plants using a PDZ Europa ANCA-GSL elemental anal-
yser interfaced to a PDZ Europa 20-20 isotope ratio mass spectrom-
eter (Sercon Ltd., Cheshire, UK) at the Stable Isotope Facility at the 
University of California Davis.

At the end of the 2015 growing season, we sampled 10 mature 
fruits from fertile individuals of each species. We dissected fruits, 
dried all seeds (number of seeds per fruit, mean n = 29, SD = 25), and 
separated apparently fertile from aborted seeds. We then measured 
relative seed set as the fraction of fertile seeds. We measured mean 
seed mass (mg) by weighing a bulk sample of seeds and dividing by 
the seed count.

2.6 | Data summarization

To summarize microenvironments, we obtained predicted val-
ues for all variables on the kriged grid spanning the site and con-
ducted a principal components analysis (PCA) on these data after 
z-transforming each variable. We retained principal components 
with eigenvalues greater than unity, and obtained predicted scores 
along these components at 10 cm gridded resolution.

For realized niches, we scored species presence or absence at each 
point on the 10 cm grid (n = 20,000 grid cells), assuming that each indi-
vidual was a circle with diameter equal to its maximum vegetative width 
in each year. We then obtained predicted microenvironment principal 
component scores at each grid point for which species were present. 
The median of this distribution represents the realized niche centroid.

To summarize vital rates, we defined recruitment events when-
ever a new plant established as either a seedling or vegetative prop-
agule in a single year, growth rate as the change in vegetative length 
across a pair of years, mortality events whenever an individual died in 
a given year, and fecundity events as the number of floral structures 
produced in a single year (acknowledging that not all floral structures 
have equivalent effects on seed production and germination).

To summarize functional traits, we calculated species means. A 
small number of missing observations (68/540) were gap-filled using 
multiple imputation by chained equations (White, Royston, & Wood, 
2011). We conducted a PCA on trait data after z-transforming vari-
ables, retained principal components with eigenvalues greater than 
unity (Legendre & Legendre, 2012), and obtained predicted scores 
along these components for each species.

To summarize species-level trait neighbourhoods, we cal-
culated two metrics of pairwise trait differentiation for species 
mean functional trait principal component X and species m and 
n: absolute difference (|Xm−Xn|) and hierarchical difference (0, if 
Xm<Xn; Xm−Xn, otherwise).
To summarize individual-level trait neighbourhoods, we de-

fined the crowding coefficient for each focal plant j as a sum over 
all other non-focal individuals k whose maximum vegetative sizes 
sk yielded circles of that diameter within 50 cm of the equivalent 
circle of the focal plant as 

∑

k ske
−djk∕δ, where djkis the distance 

between individuals’ positions and δ is a decay constant, set to 
20 cm. The value of the decay constant was chosen to roughly 
match the average below-ground root spreading distance in our 
trait data and that of others (Chu & Adler, 2015). We calculated 
this coefficient for both intra- and interspecific neighbours. We 
defined the mean trait difference for each individual j, as a size-
weighted mean trait value around each focal individual minus the 
value of the focal individual’s trait T, as 

∑

k
skTk∕

∑

k
sk−Tk, using 

the same 50 cm radius. We defined the mean trait hierarchy value 
for each individual j, as a size-weighted mean trait value around 
each focal individual as 

∑

k
skTk∕

∑

k
sk (using the same 50 cm ra-

dius) if this value was greater than the focal species’ trait value 
Tk and 0 otherwise. These estimates of trait difference and trait 
hierarchy do include individual-level data of sk, but necessarily use 
species-mean values of Tk. While allometric scaling of trait values 
with plant size could potentially provide better individual-level 
trait estimates, empirical size-trait relationships were generally 
weak (data not shown).

2.7 | Statistical analysis

To assess covariation between traits and species’ realized niches, we 
used linear mixed models to determine whether niche centroids var-
ied with functional-trait principal components at the species level 
over years (n = 67). We included fixed effects for trait principal com-
ponents and a random intercept for year.

To estimate trait effects on pairwise co-occurrence, we first as-
sembled a matrix with rows corresponding to grid points and columns 
corresponding to the presence/absence of a vital rate event for each 
species across all 4 years of the study, and also for the predicted 
microenvironment principal component scores. We then calculated 
the partial correlation matrix of this matrix using a shrinkage esti-
mator (Morueta-Holme et al., 2016), setting weak coefficients with 
absolute magnitude <0.1 to 0. These partial correlations are direct 
associations between species’ vital rates that cannot be explained 
by shared microenvironment requirements, and can tentatively be 
interpreted as biotic interactions (given the number of abiotic vari-
ables they are known not to represent). Coefficients closer to +1 
indicate facilitation, coefficients closer to −1 indicate competition, 
and coefficients closer to 0 indicate no biotic processes. We then 
used linear regression to determine whether partial correlations be-
tween vital rate events could be predicted by the species-level trait 
neighbourhoods.
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To estimate trait and microenvironment effects on vital rates, 
we built linear mixed models of vital rates, treating recruitment and 
mortality as binomial-family models with logit link functions, growth 
as a Gaussian-family model with identity link function, and fecundity 
as Poisson-family model with log link function. Models for growth, 
fecundity and survival were fit to the set of individual demographic 
events across all 4 years as replicates. Because we only observed suc-
cessful rather than failed recruitments events, the model for recruit-
ment was fit using a dataset constructed from the subset of observed 
recruitment events, paired to a set of pseudo-failed recruitment 
events located in random locations across the plots where no recruit-
ment of the focal species was observed. The number of pseudo-failed 
recruitment events was chosen to match the number of successful re-
cruitment events for each species within each year. For survival mod-
els, individuals that died before census in a given year (i.e. assigned 
a size of 0) were re-assigned their prior-year size (in order to prevent 
model under-identification while still using size as a fixed effect). The 
overall structure of the fixed effects in the full model took the form:

The model also included random intercept and size-dependent 
slope for each species, reflecting the hierarchical structure of the 
data. The random slope for size was omitted for the recruitment 
model because propagule size would always be 0 or missing for a 
failed recruitment event. We did not include random intercepts for 
year (as it had few levels, and was correlated with the macroclimate 
data) or for plot (as it was correlated with the microenvironmen-
tal data). Only three principal components were included for each 
type of variable to limit the total number of fixed effects estimated 
(n = 218). All predictors were z-transformed before analysis to enable 
interpretation of regression coefficients as effect strengths in units 
of standard deviations.

For the mixed models we reported standardized coefficients for 
fixed effects as the mean coefficient estimate, approximate p-values 
using Type III ANOVA with Wald chi-square tests, and an overall 
model marginal or conditional R2 as the sum of the fraction of vari-
ance explained by the fixed or fixed + random effects (Nakagawa & 
Schielzeth, 2013).

We conducted all analyses in r 3.3.3. Multiple imputation was per-
formed using the mice package. Spatial analyses were conducted using 
the raster and sp packages. Partial correlations were estimated with 
the corpcor package. Mixed models were built and evaluated using 
the lme4, piecewisesem, and car packages. All data (microenvironment, 
traits, censuses and vital rates) are deposited in the Dryad repository 
(Blonder, 2018).

3  | RESULTS

3.1 | Patterns and trends

Permanent plots contained a mean of n = 40 (56 SD, max. 442) in-
dividuals of mean n = 6 (3 SD, max. 15) species (Figure 1c). Over 
4 years, a total of 4,290 growth events, 1,422 mortality events, 
1,464 recruitment events, and 1,691 fecundity events were re-
corded across 18 species (Figures S1 and S2).

The microenvironment varied extensively across plots (Figure 2a; 
Table S1). The 23 microenvironment variables had five principal com-
ponent axes taking eigenvalues above unity (Figure 2b). Variation in 
the first axis (35% of the variance) described a gradient of moister, 
more fine-textured soils, with higher concentrations of manganese, 
phosphorus and nitrates/nitrogen, and lower pH and potassium con-
centrations (absolute loadings >0.25) (Figure 2c). Variation in the 
second axis (23% of the variance) described greater disturbance, and 
higher soil organic matter, electrical conductivity, and iron and cop-
per concentrations, as well as lower soil penetration energy density 
(Figure 2d).

The macroenvironment at the site also varied across years 
(Table S2), with 2016 being drier, 2015 being wetter and 2014 and 
2017 being closer to average.

Functional traits of species present at the site varied along 
multiple principal component axes (Figure 3a). The 30 orig-
inal traits loaded onto 10 axes taking eigenvalues above unity 
(Figure 3b; Table S3). Variation in the first axis (19% of the vari-
ance) corresponded to larger size, as well as lower stem bio-
mass fraction, and shorter root length (absolute loadings > 0.25) 
(Figure 3c). Variation in the second axis (17% of the variance) cor-
responded to more extensive and thicker roots, as well as lower 
stem and leaf dry matter content and lower specific root length 
(Figure 3d).

3.2 | Realized niches

We found that species occupied different portions of the microen-
vironmental space at the study site along the leading principal com-
ponent axes (Figure 4a). Most species occupied a core central region 
in the microenvironmental space, but several species occupied 
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outlying regions (e.g. Viola praemorsa and Carex siccata). Clear inter-
annual variation was not visually evident.

A linear mixed model of the first microenvironment niche axis 
centroid including the first ten trait principal components as fixed 
effects revealed a close association between functional traits and 
species’ fine-scale distributions. All axes were significant except for 
PC2 and PC3 (p > .05). The fixed effects jointly explained 76% of 
the variance in niche centroid value, with no increase in variance 

attributable to year effects. A similar model for the second micro-
environment niche axis centroid had fixed effects explaining 81% 
of the variation.

Strong trait-environment covariation was readily evident in a 
scatterplot of the first two trait and microenvironment principal 
components (Figure 4b). These patterns are consistent with a lead-
ing (but only partial) role for finer textured and richer soils filtering 
for species with fast growth and long roots.

F IGURE  3 Variation in functional traits across all species in the plots. (a) Biplot of principal components analysis of trait values across all grid 
cells. Leading principal component axes are shown in red and species scores are shown in blue. (b) Screeplot of fractional variance explained by 
each of the leading principal component axes. Only axes with eigenvalues >1 are shown. (c, d) Loadings for the first two principal component 
axes. Purple vertical lines indicate thresholds chosen for significance [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Co-occurrence patterns

The matrix of partial correlations among demographic events had 
a small fraction of non-zero coefficients (224/5112 possible links 

non-zero) (Figure 5a). Most of these coefficients were positive (170 
positive vs. 64 negative), and positive coefficients were on average 
twice as large as negative coefficients. Inter- and intraspecific coeffi-
cients occurred at approximately equal frequencies and magnitudes 

F IGURE  4  (a) Realized niches for all species using 2017 data, for the first and second microenvironment principal component axes. 
Points indicate median values, and line segments indicate inter-quartile range. Data are not shown for other years as they are very similar. 
(b) Partial residual plot for each the first two leading microenvironment principal components for the first two (of ten) leading trait principal 
components. Points indicate species-mean/environmental-median values, and regression lines indicate relationships fit for each year. Lines 
are overlapping due to the high inter-annual similarity [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE  5  (a) Partial correlations 
between species’ distributions for 
different vital rates, pooled across all four 
years. Edge strength indicates the direct 
effect of one taxon on another taxon’s 
distribution after taking into account 
the effect of shared microenvironment 
and all other species’ distributions. Blue 
edges indicate positive association; 
red, negative. Edge weight indicates 
magnitude of the partial correlation. 
Names are abbreviated using the first 
three letters of the genus and species 
for visual clarity. (b) Summary of the 
number and magnitude of partial 
correlation coefficients for interspecific 
vs. intraspecific and positive vs. negative 
categories (black) and among different 
vital rate pairs (gray). (c) Pairwise 
relationships between partial correlation 
coefficients and either trait hierarchies 
(orange) or differences (purple) for each 
vital rate pair [Colour figure can be viewed 
at wileyonlinelibrary.com]
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for both positive and negative coefficients. Recruitment-fecundity 
and survival-fecundity coefficients were consistently negative, 
while all others were generally positive. Most coefficients described 
growth-recruitment and growth-fecundity correlations (Figure 5b).

We then determined whether trait differences or hierarchies in 
either trait PC1 or trait PC2 predicted partial regression coefficients. 
There was no significant relationship between these four variables 
for the majority of the vital rate pairs (p > .05) (Figure 5c). Exceptions 
occurred for survival-growth (R2 = .04), growth-recruitment 
(R2 = .12), growth-fecundity (R2 = .15) and recruitment-fecundity 
(R2 = .07). The effect of trait distance PC1 and PC2, as well as trait 
hierarchy PC1 was significant for each of these models.

3.4 | Vital rates

Variation in all vital rates was associated with variation in a combi-
nation of size, functional trait, microenvironment, macroenvironment 
and neighbourhood variables, as well as interactions between these 
variable types (Figure 6a). Larger plants had uniformly greater growth, 
survival and fecundity rates. There were saturating (negative quad-
ratic) effects of size on survival and fecundity, but not on growth.

The macroenvironment (prior precipitation) had a positive ef-
fect on survival, but no effect on growth, fecundity or recruitment. 
The microenvironment had only weak direct effects on vital rates 

except fecundity and recruitment, which increased along PC1 and 
decreased along PC2.

Functional traits of species affected vital rates in a variety of ways. 
Growth was higher for species with lower values of PC2. No trait axis 
directly affected survival. Fecundity was lower for higher values of PC2 
and PC3. Recruitment was higher for higher values of PC1 and PC3.

Vital rates also depended on neighbour effects. Greater in-
traspecific crowding increased survival, fecundity and especially 
recruitment rates. Greater interspecific crowding also increased re-
cruitment rates, but otherwise had no effect on other vital rates.

In all models, interactions between variables were more common 
than were main effects. For the growth model, 11 of 15 significant 
effects were interactions; for survival, 8 of 13; fecundity, 109 of 121, 
recruitment, 38 of 48. Across all types of interactions, significant inter-
action terms occurred approximately as frequently as significant main 
effect terms relative to the number of possible terms (24% [SD 40%] 
for interaction terms, 40% [SD 35%] for main effect terms, p = .09 [t 
test]) (Figure 6b). Significant interaction terms occurred among all vari-
able types for all vital rates, and were approximately equally common 
across variable types. However, the sign and magnitude of each effect 
were heterogeneous across variable types, challenging interpretation.

Overall, all vital rates were well-explained by the variables we 
investigated. The model for growth explained 41% of variation from 
fixed effects alone, and 56% of variation when also including random 

F IGURE  6  (a) Effect of different size, trait, microenvironment, macroenvironment and neighbourhood predictors on each vital rate. Grid 
colour indicates effect sign: bluer, more positive; redder, more negative. Effect sizes are scaled to unit range within each vital rate. Only 
statistically significant effects are coloured. (b) Summary of the fraction of variables within each category and vital rate that are statistically 
significant (normalized to the number of possible variables within each category) [Colour figure can be viewed at wileyonlinelibrary.com]
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effects; for survival, 57% or 69%; for fecundity, 60% or 93%; and for 
recruitment, 97% or 97%.

4  | DISCUSSION

The structure and dynamics of an alpine plant community were 
closely tied to functional traits of the resident species and their mi-
croenvironments. This supports the central hypothesis that better 
incorporating these factors into models can improve the predict-
ability of community ecology. In the following, we discuss several 
general conceptual implications of these findings that are relevant 
beyond the immediate study site.

We demonstrated strong microenvironmental control of species 
distributions. Importantly, the distribution of each species at this 
fine scale was strongly associated with species-mean functional trait 
values. These results suggest that much of the apparent stochastic-
ity in fine-scale community structure is actually deterministic, and 
can be predicted based on trait-based species sorting. In particu-
lar, we found strong relationships between several below-ground-
microenvironment variables and several below-ground traits, 
consistent with a growing recognition of the importance of below-
ground processes (Laliberté, 2017).

The fine-scale distributions of species were not random, but de-
pended both on environmental conditions and on the distribution of 
interacting species. Importantly, we showed that many species had 
spatial distributions that were strongly associated with other spe-
cies’ spatial distributions after accounting for the effects of shared 
microenvironmental requirements. These associations varied across 
species and vital rates, but were almost always positive. However, 
trait differences or trait hierarchies amongst species could rarely 
predict these associations. Thus, pairwise relationships between 
species’ functional traits do not seem to provide insight into these 
co-occurrence patterns. Rather, traits seem to mediate occurrence 
patterns independently via the microenvironmental partitioning ex-
plored in the analyses above.

We showed that key vital rates are not stochastic, and are pre-
dictable from measurable parameters. The large component of 
variance attributed to random effects for fecundity suggests that 
other unmeasured factors differentially affect taxa, e.g. differential 
florivory, while other unmeasured or random factors, e.g. random 
vegetative herbivory may have caused the lower amount of variance 
explained for growth. Nevertheless, measured factors provide a 
mostly complete explanation for survival, fecundity and recruitment 
rates, and are also capable of explaining a large fraction of variation 
in growth rates.

However, predictability of vital rates did not arise solely from 
the main effects of each variable, but primarily from a wide set of 
interactions between variable types. With respect to vital rates, we 
showed that growth, survival, fecundity and recruitment could be 
predicted by a combination of functional traits, microenvironment, 
macroenvironment and neighbourhood effects (reflecting both trait-
mediated and non-trait-mediated interactions). This finding suggests 

that the functional significance of traits is highly context dependent 
(==REF to editorial==). This might explain why partial correlation co-
efficients did not appear to be linked to traits after accounting for 
context-independent dependencies on environment. This may also 
explain why previous studies of co-occurrence also had limited suc-
cess in explaining the observed patterns, e.g. Morueta-Holme et al. 
(2016). Additionally, the functional significance of each trait varied 
across vital rates. Relationships between traits and fitness are not 
necessarily simple, because traits had contrasting effects on dif-
ferent vital rates, and each of these effects had different context 
dependence. Thus, much of the variation in the importance of traits 
for demography, and ultimately fitness, may arise from inability to 
quantify trait interactions with neighbours, microenvironment and 
macroenvironment, e.g. Adler et al. (2014); Kunstler et al. (2016); 
Visser et al. (2016)—but see Lasky et al. (2015).

At our study site, facilitative processes appear to play a key role 
in structuring community dynamics. Evidence for facilitation arose 
from two sets of results: first, the high prevalence of positive asso-
ciations between species’ distributions that could not be explained 
by shared microenvironmental requirements, and second, the con-
sistent positive effects of intraspecific (and sometimes interspecific) 
neighbourhood density on multiple vital rates. In contrast, we failed 
to detect strong evidence for competitive interactions in this sys-
tem, consistent with the proposed greater importance of facilitation 
as stress increases (Callaway et al., 2002). This finding builds on a 
growing body of evidence that facilitation can be a strong mecha-
nism structuring community dynamics, as seen in other desert and 
alpine communities (Butterfield, 2009; McIntire & Fajardo, 2014). 
This finding is important because many models of community dy-
namics assume that all interactions between species are purely com-
petitive (e.g. Barabás, Michalska-Smith, & Allesina, 2016; Saavedra 
et al., 2017). Indeed, no existing trait-based models of species in-
teractions yield facilitative interactions. For example, both the trait 
difference and trait hierarchy hypotheses we explored here yield 
only competitive outcomes. Better incorporating both positive and 
negative interactions into trait-based community ecology is an open 
challenge (Wright, Schnitzer, & Reich, 2014).

Environmental filtering and biotic interactions are often con-
sidered as independent processes driving community assem-
bly (HilleRisLambers, Adler, Harpole, Levine, & Mayfield, 2012). 
However, this study suggests that, at fine scales, there may be no 
clear boundary between environmental filtering and biotic interac-
tions (Soberón & Nakamura, 2009). When individuals modify their 
local microenvironments, e.g. by changing moisture, light, or thermal 
conditions, environmental and biotic-interaction processes are no 
longer independent, but rather interactive. We found evidence for 
trait—environment—neighbourhood interactions in vital rate regres-
sions, as well as positive associations between individuals’ fine-scale 
distributions, which are all consistent with this scenario. Additionally, 
this scenario would challenge community ecology frameworks that 
attempt to partition patterns into abiotic environmental filtering 
and biotic interaction components, e.g. (Swenson & Enquist, 2009; 
Webb et al., 2002).
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The number of variables measured in this study required a level 
of effort likely beyond most practical situations in which predic-
tions of community dynamics will be desired. It remains unclear 
how many (and which) variables must be measured before an ac-
ceptable level of predictability is achieved. It is possible that the 
high predictability obtained in this study is a result of model over-
fitting. On the other hand, the variables measured were largely 
mutually uncorrelated and could each be argued to have important 
functional roles. Much larger datasets might be able to resolve this 
question, but only at the cost of dramatically increased sampling 
effort. Even with the large number of demographic observations in 
this dataset, we were limited to modelling vital rates based on only 
the leading trait and microenvironment axes because of the rapid 
increase in the number of interaction terms with number of axes 
relative to the limited possible degrees of freedom in the data. Thus, 
a balance needs to be struck between large exploratory analyses 
such as this one, and the overly simplistic single-axis analyses that 
have largely characterized the field (==REF to editorial==). Rather, 
it may be useful to develop more mechanistic trait-based models 
of plant performance and population dynamics that could explore 
the implications of multidimensional trait variation on community 
structure and dynamics across contexts.

Several of our findings point to important roles for below-ground 
traits and microenvironment axes. Root traits like specific root length 
and maximum root length were associated with the leading axes of trait 
variation, and soil properties like penetration energy density, texture 
and pH were associated with the leading axes of microenvironment 
variation. Our study indicates that the predictability of community 
structure and dynamics is improved by the inclusion of below-ground 
variables (Laliberté, 2017; McCormack, Lavely, & Ma, 2014). The 
observed linkages among below-ground factors may generalize be-
yond alpine sites, and also extend other studies that have identified 
physiographic drivers of species distributions (Clark, Palmer, & Clark, 
1999) to the community scale. Nevertheless, such measurements are 
time-intensive and often destructive (e.g. excavation of whole root 
systems). To circumvent these issues, there is a need for further de-
veloping below-ground trait databases (Freschet et al., 2017; Iversen 
et al., 2017) and fine-scale soil maps (Arrouays et al., 2014).

The main conclusion of this study is that the predictability of 
community structure and dynamics can be improved by account-
ing for multivariate microenvironmental heterogeneity, and the 
context-dependence of functional traits, especially below-ground. 
Incorporating microenvironment and context into trait-based ecol-
ogy may provide more powerful approaches for understanding com-
munities, though at greatly increased effort.
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